My LA’s facilitate group problem-solving in course discussion sessions, develop conceptual worksheets on the topics that promote critical reasoning…supported by their pedagogical training and weekly consultations with me, my LA’s work with students to convey the concepts behind every topic or worksheet problem without enforcing regurgitation of the course material. Besides strengthening students’ learning, my LA’s have also developed robust self-directed learning strategies, communication skills and have a reinforced understanding of the material compared to when they were students. I have seen all my LA’s evolve from determined students into budding leaders and educators! 

Incorporating LA into my physics courses has radically changed them for the better. Discussion sections are significantly more productive and impactful, students generally feel more supported, and LAs have been excellent at facilitating meaningful collaboration between students in multiple contexts. In addition, students who served as LAs gain confidence as intellectual leaders, better understand how their own process of learning works, and promote a positive and inclusive academic climate and results in a wonderful chain reaction of positive benefits for students, faculty, and our institution as a whole.

The Learning Assistants have greatly facilitated teaching in my lab course. The LAs provide students much more individual attention than we could give with the usual staff. The LAs improve the pedagogical atmosphere both in lecture when helping students with clicker questions and in lab during hands-on learning.

Being able to run discussion sections with undergraduate LAs present has greatly improved student participation and understanding, as evidenced by higher attendance and test scores. Given my large class sizes the numerous LAs are able to alleviate some of my workload by answering questions on the discussion board while also providing more individual attention within discussion sections. Students are usually more willing to communicate with those who can relate to their own issues, and LAs provide such an outlet on a regular basis….the LA Program has opened up new opportunities for teaching large-scale courses, and I have been nothing but pleased with my interactions with these high-caliber students, the professional development team, and the program director.

After visiting the Learning Assistant Alliance conference with Dr. Shaked, we combined efforts and formalized the LA program. I implemented LAs in my Intro to Molecular Biology Lecture (LS3) and had a wonderful experience with them. Given the rigorous training of the LAs and their recent completion of the course themselves, I would consider them extremely valuable for my instruction and they are as effective than the much more advanced graduate student TAs. All of the LAs I interacted with were highly motivated and easy to work with, I would recommend this program to anyone interested and to anyone who is thinking about implementing active learning but needs extra hands in the classroom to do so.

When I first arrived at UCLA, I was nervous to talk to a professor, let alone ask them for help, so I saw the LAs as approachable and knowledgeable figures! 

Information for Instructors

Learn about the LA program

Click here for a collection of more than 50 peer-reviewed publications and presentations studying the impacts of LA programs nationwide.

LAs Can Facilitate Active Learning

  • Several studies have pointed to the value of adopting peer interaction and active learning strategies for increasing student learning and grade performance.
  • Using LAs can help support the implementation of these high impact approaches.
  • LA implementation in large lecture courses has helped lower the “activation energy” for active learning and contributed to its spread throughout an institution.
  • When LAs are used to transform traditional lecture-dominated courses into a more interactive and inclusive format, it is generally at a ratio of about one LA for every 20-30 students.

LAs are Associated with Factors that Increase URM Persistence and Learning

  • Two of the five exemplary Physics departments highlighted by the National Research Council for retaining URM students featured an LA program.
  • A very recent study covering LAs used in 67 courses at 16 different institutions found that LAs decreased and helped flip the achievement gap.
  • Peer-Led Team Learning (which shares many characteristics of Learning Assistants) led to decreased DFW rates in an introductory biology class, with a disproportionately higher effect for URM students (figure at right)



LA-Transformed Physics + Biology Courses Have Higher Learning Gains

  • A very recent study of LA use in 69 courses across 17 institutions found that LAs increased performance on physics concept inventories, with the largest impacts in labs, followed by discussion section, then lecture.

  • A study at University of Colorado at Denver  found that even when implemented by a variety of faculty members, many of whom were not familiar with physics education research, sections taught with LA-assisted tutorials achieved higher normalized gains.

  •  Most students surveyed about LAs agree that LAs helped them learn and feel more satisfied with the course.




LAs Can Aid Institutional Transformation of Teaching By Focusing on Discussion/Lab

  • While lectures are generally less collaborative, discussion and lab sections are ideal for LA augmentation.
  • LAs can facilitate group work and collaborative learning in a discussion section through training and by simply supplying more available instructors to circulate in the classroom.

LAs in Lecture Can Increase Student Reasoning

  • A study showed that in classrooms with LAs, students engaged in discussion relevant to the clicker question 93% of the time, even in sections with more than 200 students.
  • Groups who regularly interacted with an LA during lecture were more likely to both request reasoning during a discussion and to spend more of discussion time on task.

Click here for a 2021 literature review of studies on the impacts of LAs.

If you are interested in having Learning Assistants, contact Shanna Shaked by week 5 of the previous quarter or as soon as possible. Preliminary contact as well as applying to enter the program as a course instructor will be handled through Shanna Shaked.



Instructors involved in the LA program

Jasper Kok (AOS 101)

Jonathan Aurnou (EPSS/AOS M71)

Agape Awad (153A)

Albert Courey (14B, 153B, 153C)

Amber Reilly (30A, 14D)

Anish Nag (14D)

Anne Hong-Hermesdorf (153L)

Brantly Fulton (14C)

Chong Liu (14B)

Christian Beren (20A, 20B)

Daniel Neuhauser (20A)

Deborah Jarrett (153L)

Delroy Baugh (20A)

Franklin Ow (14A, 14B)

Heather Tienson-Tseng (153A, 153B)

Hung V. Pham (30A, 30B, 30C, 14C, 14D)

Jennifer R. Casey (14AE)

Justin Caram (14A)

K.J. Winchell (20A)

Louis Bouchard (20B)

Margot E. Quinlan (14B)

Marlius Castillo-Rodriguez (14C)

Paul Weiss (20BH)

Paul Zinke (30B)

Rachel Prado (14A, 14C, 14D)

Robert Tobolowsky (14D)

Roshini Ramachandran (14B, 14C)

Steve Hardinger (14C, 14D)

Timothy Atallah (20A)

William M. Gelbart (110A)

Carey Nachenberg (CS32)

David Smallberg (CS31, CS32)

Edwin Ambrosio (CS32)

Glenn Reinman (CS33)

Howard Stahl (CS31)

Joseph DiStefano (CS/BE M182, CS/BE M186)

Parvaneh Gahforyfard (CS30)

Paul Eggert (CS33, CS97)

Todd Millstein (CS30)

Tony Nowatzki (CS33)


Ana Elisa Garcia Vedrenne (EE BIOL 108)

Maura Palacios Mejia (EE BIOL 87)


Moana McClellan (Environ M167)

Anthony Friscia (GECLST 70)

Alan Garfinkel (30)

Amy Fluitt (3)

Debra Pires (7A, 7B, 7C)

Elizabeth Reid-Wainscoat (23L)

Gaston Pfluegl (23L)

Hung Pham (4, 107)

Jane Shevtsov (20, 30A, 30B, 40)

Jeff Maloy (7A, 7B, 7C)

Jukka Keranen (30A)

Liz Roth-Johnson (7A)

Megan McEvoy (7A)

Rachel Kennison (110)

Rana Khankan (7A)

Sharmila Venugopal (30B)

Will Conley (30B)

Allen Gehret (33B, 182)

Benjamin Harrop-Griffiths (32B)

Clover May (32A, 32B)

David Arnold (32A)

James Cameron (32A)

Michael Willis (32A)

Mike Hill (32A)

Niccolo Ronchetti (1)

Nick Anderson (31B, 32B, 33A)

Paige Green (1, 3A, 3B, 31A, 31AL)

Rolando de Santiago (32A)

Sylvester Eriksson-Bique (32A)

Will Conley (31AL, 31B)

Raphael Romero (Neurosci 192)

Andrea Chaney (1B, 1C, 5B, 6C)

Chris Niemann (5B, 5C, 6C)

Elizabeth Mills (1B, 5AL, 5BL, 5C, 5CL, 6AL, 6BL, 6CL)

George Trammell (5AL, 5BL, 5CL)

Glenn Rosenthal (6C)

Graciela Gelmini (1A)

Ian McLean (5C)

Jacqueline Pau (5C)

Jay Hauser (4AL)

Joshua Samani (1A, 1B, 5A, 5C, 131)

Katsushi Arisaka (4AL, 4BL, 5AL, 5CL, 6B)

Ni Ni (4AL)

Rene A. Ong (5A)

Seth Dorfman (5B, 5C, 6B, 6C)

Shanna Shaked (5B, 6A, 6B, 6C)

Shoko Sakai (5A)

Zhongbo Kang (1C)

Amy Rowat (PhySci 7)

Anthony Friscia (PhySci 13)

Courtney Clark (Psych 10)

Jared Wong (Psych 116)

William Grisham (Psych 116)

Jessica Alfaro (SocGen 105B)

Juana Sanchez (Stats 100A)

Michael Tsiang (Stats 13, Stats 20)

Any questions? Contact Dr. Shanna Shaked at!